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Abstract— Recent advances in humanoid robotics have
demonstrated the potential of reinforcement learning for lo-
comotion control. However, existing approaches often over-
simplify upper body control during policy learning, resulting
in unnatural movements and poor robustness against upper-
body disturbances. In this work, we present a framework that
enables human-like agile motions, including walking, running,
and jumping, while maintaining full-body coordination under
external perturbations. We develop a motion optimization
pipeline that refines motion capture data by explicitly consid-
ering the robot’s joint limits and torque constraints, ensuring
the generation of physically feasible reference trajectories.
Additionally, we propose an Autoencoder-based latent rep-
resentation scheme that encodes expert demonstrations into
privileged observations for cumulative reward estimation. This
approach improves policy alignment with expert distributions
while maintaining computational efficiency during deployment.
Experimental results demonstrate that our method enables a
real humanoid robot to perform dynamic locomotion tasks with
human-like whole-body coordination and enhanced robustness
to upper-body disturbances.

I. INTRODUCTION

Humanoid robots have gained increasing attention in
recent years due to their human-like appearance, which
enables them to perform a variety of tasks traditionally
undertaken by humans. Locomotion is a critical and integral
aspect of humanoid robot systems. However, the inherently
unstable nature of humanoid robots, due to their higher
center of mass, makes achieving effective locomotion much
more challenging compared to other robotic systems, such
as quadruped robots. Traditional humanoid locomotion of-
ten relies on model-based optimization algorithms, such as
Model Prediction Control (MPC) [1] and Linear Quadratic
Regulator (LQR) [2]. These algorithms typically construct
a mathematical model to represent both the robot system
and its environment, which has demonstrated considerable
success in the past.

However, as humanoid robots are increasingly required to
traverse more challenging terrains, traditional optimization
algorithms have been shown to be inadequate in address-
ing these complexities. Reinforcement Learning (RL) has
emerged as a promising alternative and has achieved signif-
icant success in the field of humanoid locomotion in recent
years [3]–[5]. RL allows a humanoid robot to independently
find the optimal behavior by interacting with its environment
through a trial-and-error process. Instead of specifying the
solution directly, the control task designer in RL offers
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feedback via a scalar objective function, which assesses the
humanoid robot’s performance at each step. This process
makes our humanoid robot adapt to different environments
easily while maintaining its stability. Numerous studies have
focused on controlling the lower body of humanoid robots
by reward designing, enabling them to walk, run, and jump
across a variety of terrains robustly [3]–[5].

Focusing solely on controlling the lower body of hu-
manoid robots by reward designing may limit their ability
to reach their full potential. For instance, walking without
arm movement can significantly affect a humanoid robot’s
ability to maintain balance when subjected to large external
forces. Furthermore, relying solely on reward design to
control humanoid robots may fall short in achieving complex,
agile motions such as fast running or dancing. As a result,
whole-body control for humanoid robots has become an
increasingly prominent area of focus.

Various works have employed imitation learning to achieve
whole-body control in humanoid robots. Zhang et.al [6]
propose adversarial motion prior learning framework, which
combines imitation learning with reinforcement learning on
a full-size humanoid robot, enabling humanoid robot to walk
and run with human-like movements. Exbody [7] further
applies the AMP method to imitate upper-body movements
in humanoid robots, enabling a range of motions such as
dancing, hand waving. However, all of these approaches
rely heavily on the quality of motion capture (MoCap)
data. When the reference motion is difficult for a humanoid
robot to replicate, it can hinder the policy learning process.
Additionally, reinforcement learning policies driven solely by
expert policy reward signals still face challenges such as slow
convergence and instability. These issues mainly stem from
the insufficient integration of guiding information embedded
in expert trajectories during the learning process, making
it difficult to accurately learn and evaluate the alignment
with expert policies when estimating cumulative returns. For
example, when learning agile motions such as running and
jumping, understanding future dynamics and recalling past
experiences can help the robot perform accurately, as the
states change rapidly in these scenarios.

To address these challenges, we developed a multi-stage
motion capture and policy learning pipeline. First, we utilize
high-precision mocap equipment to record detailed motion
sequences. We then employ a two-step retargeting process:
applying Poselib in ASE [8] for initial motion adaptation,
followed by Inverse Kinematics optimization in Pink [9]
to ensure joint trajectories remain within the robot’s phys-
ical constraints. Our comparative analysis shows that this
combined approach achieves higher retargeting precision



Fig. 1: Our framework can perform walk, run and jump in a human-like manner. The image above shows the side view of
walk, run and jump respectively.

compared to direct application of Poselib to existing motion
databases such as CMU Motion Capture dataset [10]. To ef-
fectively leverage these expert demonstrations, we implement
an Autoencoder architecture [11] that compresses mocap
sequences into a compact latent representation. The encoded
expert motion data is then integrated into the critic network,
allowing for more accurate cumulative reward estimation by
considering both historical and future states during reinforce-
ment learning. This facilitates more effective policy learning,
enabling the robot to better replicate the demonstrated expert
behaviors.

Our key contributions are summarized as follows: (i) We
successfully deployed an agile policy based on the AMP
framework for whole-body optimization on a real-world hu-
manoid robot, enabling it to walk, run, and jump with human-
like agility. The coordination between upper and lower limbs
closely matches human behavior, while demonstrating robust
performance against disturbances. (ii) We developed a mocap
data retargeting technique that considers mechanical dynamic
feasibility, significantly improving the quality of expert
demonstrations and facilitating policy training. (iii) In our
reinforcement learning approach, we utilize an Autoencoder
to compress the mocap data and incorporate it into the
privileged observation when estimating cumulative returns.
This better helps align the robot’s policy with expert policy
distributions, significantly improving sample efficiency and
training robustness.

II. RELATED WORK

A. Legged Robot Locomotion

Legged robot locomotion is a popular topic in recent
years. Among them the most studied areas are the quadruped
robot locomotion, and the recently emerged humanoid robot
locomotion. Quadruped robot, due the its high stability, is
much more mature than humanoid robot locomotion. Lee
et.al [12] is one of the most representing work, showing
the capability of quadruped robots in maintaining stability
in natural environments. TERT [13] is one of the first
works trying to apply transformer to locomotion problem,
showing the superiority of the high capacity for sequence
modeling and the self-attention mechanism of Transformer.
Some works integrate vision information into the robotics
system, enabling robots to operate autonomously in remote
and hazardous environments, even performing some agile
motions around complex obstacles [14].

Many works train an end-to-end Reinforcement Learn-
ing(RL) controller for humanoid robots recently. One of the
most representing works leverage periodic reward to train
various gait patterns including walking, running, jumping
and hopping [3]. Meanwhile, Duan et.al [4] enable robots
to across complex environments such as climbing stairs and
stepping across stones. Another type of work utilize the
power of generative models such as transformer to generate
trajectories, enabling the full-sized humanoid to walk in the
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Fig. 2: Overall Framework: We begin by training a
transformer-based Autoencoder to capture key features of
the mocap data. During the RL training phase, the trained
Autoencoder is used to compress both past and future mocap
data into the privileged observation. Our RL framework is
built on Adversarial Motion Priors (AMP).

real-world in zero-shot manner [15]. However, most of the
work mentioned above focuses solely on controlling the
lower body of humanoid robots. In contrast, our approach
controls both the upper and lower body, aiming to train a
more human-like and stable whole-body controller.

B. Imitation Learning for Humanoid Locomotion

Imitation learning is a crucial technique for humanoid
locomotion, allowing humanoid robots to accurately replicate
human motions that are challenging to achieve through tra-
ditional reward-based design alone. Existing frameworks for
imitation learning for humanoid locomotion can be broadly
categorized into two types. The first is to accurately mimic
each frame of a human motion sequence. The representative
work is deepmimic [16], which tracks the actuated joints, end
effectors and base information of each frame. Li et.al [17]
successfully deploy the framework on a real humanoid robot,
allowing the humanoid to accomplish versatile motions like
agile walking, running, jumping and even dancing. The
second one is to imitate the style of human motion sequences
using the generative adversarial imitation learning(GAIL)
framework. The representative work is AMP [18], which
incorporates a discriminator in an RL framework, enabling
the RL policy to rollout sequences similar to the style of the
human motion sequences. ASE [8] compress the skills into a
latent space, allowing the framework to be more controllable.
RACon [19] retrieves next framework target motion based
on the current motion and control signal in a large dataset to
serve as an guidance to the RL policy, enabling the policy to
be more efficient and can switch between different motions.
Zhang et.al [6] and ExBody [7] successfully transfer the
AMP framework on a full-size humanoid robot, enabling
the humanoid robot to perform various motions in a human
manner. However, all of these works fail to incorporate future
observations from the expert data during policy training.

III. PRELIMINARY

A. Humanoid Robot XBot-S

In this study, we employ the XBot-S robot model from
RobotEra to conduct our experiments. The robot stands 1.2
meters tall, weighs 35 kilograms, and features 20 degrees of
freedom, with 6 degrees allocated to each leg and 4 degrees
to each arm.The XBot-S robot is engineered for exceptional
dynamic performance, particularly in terms of torque and
speed capabilities. Notably, its knee joint can generate a
maximum motor torque of 250 N·m, coupled with a peak
angular velocity of up to 12 rad/s. These specifications enable
the robot to execute rapid, high-torque movements, essential
for tasks requiring both power and precision.

Additionally, the robot’s ankle is designed with two
degrees of freedom—roll and pitch—which significantly
enhance its flexibility. This multi-dimensional movement
capability not only provides greater control potential but also
allows for more human-like motion, closely mimicking the
natural range of movement seen in human ankles. This ad-
vanced articulation offers improved balance and adaptability,
particularly in dynamic and unstructured environments, mak-
ing XBot-S an ideal platform for research and applications
in humanoid robotics.

B. Reinforcement Learning

We utilize Reinforcement Learning (RL) to address
our problem. Specifically, we model the problem as a
discrete-time Partially Observable Markov Decision Process
(POMDP), represented by the tuple M = (S,A, T,R,O, γ).
Here, S denotes the state space, which encompasses all
possible states of the environment. A represents the action
space. T is the state transition function, which describes
the transition from state st to state st+1 under the action
at, formally defined as T (st+1|st, at). The reward function
R(st, at) assign a reward to the current state st when
taking action at. O represents the partial observations of the
humanoid robot, which are limited by the capabilities of the
robot’s sensors. Finally, γ ∈ [0, 1] is the discount factor.

During training in the simulation, the robot receives partial
observations ot from its sensor at each timestep t. It then
selects the action at according to the policy π(at|ot). After
executing this action, the robot transitions to the next state
st+1 following the state transition function T (st+1|st, at).
Meanwhile, a reward is generated by the reward function
R(st, at), which is used to update the policy. The primary
objective is to maximize the expected return:

J =

T∑
t

[γtR(st, at)] (1)

IV. METHOD

Our primary objective is to integrate imitation learning into
an RL policy to replicate human motions from mocap data.
Using this RL policy, our humanoid robot is able to walk,
run, and jump with human-like agility. In this section, we
begin by introducing our improved motion retargeting pro-
cess in Sec. IV-A. Then we introduce our imitation learning
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Fig. 3: Visualization of our Motion-Retargeting process

framework in Sec. IV-B. Following that, we describe how
we use an Autoencoder [11] to compress mocap data into
privileged observations in Sec. IV-C. Finally, we present our
whole-body control using reinforcement learning in Sec. IV-
D. Our overall framework is illustrated in Figure 2.

A. Humanoid Robot Reference Generation

In this work, alongside utilizing the CMU motion capture
dataset [10], we conducted additional recordings using state-
of-the-art motion capture equipment to capture the specific
movements required for our study. The inclusion of these
custom recordings significantly enriches our dataset, pro-
viding a more diverse range of motion samples. This, in
turn, enhances the robustness and variability of the training
process, allowing for more accurate and dynamic generation
of movement styles.

Once a sufficient number of datasets have been collected,
the next step is to map the motion capture data to the robot,
ensuring that the robot’s movements are both anthropomor-
phic and adapted to its mechanical constraints, such as motor
position,velocity and joint limits. This process is outlined in
Figure 3.

To be more specific, the raw motion capture data is first
converted to fit the skeletal model used in our system through
the method provided by ASE. The resulting transformation
outputs the global base pose bpose along with the pose of
the four key end points relative to the base of the robot
(Pla, Pra, Plf , Prf ).

From these outputs, the Python inverse kinematics(Pink)
for articulated robot models, based on Pinocchio [20] is used
to compute the corresponding joint angles, velocities, and
base pose.

These calculated parameters are crucial for ensuring that
the robot’s motions not only replicate the captured hu-
man movements but also conform to the robot’s physical
properties, such as motor limitations and dynamics. Fi-
nally, these processed data points are transformed to the
AMP(Adversarial Motion Prior) space, where they are uti-
lized to generate fluid, anthropomorphic movements that
closely resemble human motion while respecting the robot’s
physical constraints.

B. Imitation Learning from Motion Capture Data

In our imitation learning section, we build our framework
on Adversarial Motion Priors (AMP) [18]. In our framework,

Algorithm 1 Retarget Process for Robot Motion

Require: Mocap data D = {v1, v2, . . . , vmax} at different
velocities

Ensure: Joint angles θ and joint velocities θ̇ for each
velocity

1: for each v ∈ D do
2: Record mocap data Pmocap = {p1, p2, . . . , pb},

where pi represents the poses of end effectors and
base in world coordinates

3: Use ASE network to map Pmocap to robot dimensions,
yielding Probot

4: Compute inverse kinematics for Probot:

{pi}
IK−→ {θ, θ̇}

5: Apply Gaussian filtering to {θ, θ̇}:

θfiltered =
1√
2πσ

N∑
k=−N

θke
− k2

2σ2

6: Store {θfiltered, θ̇filtered} as output for velocity v
7: end for
8: return Joint angles and velocities for all velocities

{v1, v2, . . . , vmax}

we use a discriminator to distinguish whether the state
originates from mocap data or the agent. Specifically, we
first construct the AMP observation ot

D to better capture
the style of the mocap data. The observation ot

D includes
the local rotation and velocity of each joint, the linear,
angular velocities, and the z-axis position of the base, as
well as the positions of both hands and legs relative to
the base. Observation transitions from the agent and those
sampled from the mocap data are fed separately to the
discriminator. We label the transitions from the mocap data
as ’real’ and those from the agent as ’fake.’ The goal of
the discriminator is to classify these inputs correctly: when
mocap transitions are provided, the output should approach
1, whereas transitions from the agent should produce outputs
closer to -1. As a result, the objective function can be
formulated as follows:

argmin
D

EdM(otD,oDt+1)

[(
D(ot

D, oDt+1)− 1
)2]

+ Edπ(s,s′,otD,oDt+1)

[(
D(ot

D, oDt+1) + 1
)2]

.
(2)

Since discriminators often suffer from mode collapse, we
follow AMP [18] by applying a gradient penalty to the mocap
data transitions to ensure stability. This can be formulated as
follows:

argmin
D

EdM(otD,oDt+1)

[∥∥▽D(ot
D, oDt+1)

∥∥2] . (3)
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The final objective function to train the discriminator is
formulated as follows:

argmin
D

EdM(otD,oDt+1)

[(
D(ot

D, oDt+1)− 1
)2]

+ Edπ(s,s′,otD,oDt+1)

[(
D(ot

D, oDt+1) + 1
)2]

+ wgpEdM(otD,oDt+1)

[∥∥▽D(ot
D, oDt+1)

∥∥2] ,
(4)

where wgp is the coefficient for the gradient penalty. Fur-
thermore, during each epoch, we update the discriminator
once and the RL policy five times. This approach enhances
the RL policy’s ability to generate states that more closely
resemble human behavior. Following that in AMP [18] and
Zhang et.al [6], the style reward at each timestep for the RL
training is formulated as follows:

Rstyle = max[0, 1− 0.25
(
D(oDt , oDt+1)− 1

)2
] (5)

C. Compressing Mocap Data into Privileged Observations

Previous works employing the AMP framework on hu-
manoid robots rely solely on historical data to learn the style
of the mocap data, overlooking the importance of future
states. However, enabling the policy to be aware of future
expert states can improve the robot’s posture and enhance
robustness to a certain extent.

To address this, we first train a transformer [21]-based
Autoencoder [11] to compress the mocap data into a latent
space. The compressed mocap data is then incorporated into
the privileged observation of the critic network for policy
training. The motion sequence consists of a series of human
motion frames F = [F1, F2, ..., FL], where L denotes the
temporal length of the sequence and F ∈ RL×C with C
representing the feature dimension of a single frame. A
single motion frame here is structured the same way as
those used in the discriminator. The motion sequence F is
first mapped into a latent space via a linear projection, after
which a [CLS] token z, representing the global feature of
the entire sequence, is appended at the beginning of the
sequence. The processed sequence Fp = [z, F1, F2, ..., FL] is
then passed through a transformer-based encoder Menc. The
global feature z is subsequently fed into a transformer-based
decoder Mdec to reconstruct the original sequence as Frecon

. This process ensures that the global feature z effectively
preserves the information of the entire sequence. The loss
function for training the Autoencoder can be formulated as
follows:

LossAE = MSE(F, Frecon). (6)

During RL training, the encoder Menc is kept fixed. To
incorporate both historical and future observations, we select
10 past observations [Ft−10, ..., Ft−1] and 10 future obser-
vations [Ft+1, ..., Ft+10], based on the current observation
Ft. The entire sequence [Ft−10, ..., Ft+10] is then fed to
the encoder Menc, which outputs the global representation
zt. This global representation is added to the privileged
observation of the critic network to enable the policy to be
aware of both past and future states.

st = Concat(zt, st) (7)

D. Whole-Body Control through Reinforcement Learning

In the previous section, it was demonstrated that Ad-
versarial Motion Priors (AMP) space facilitates the robot’s
ability to learn motion from mocap data. However, to achieve
specific motion objectives, task-space guidance is essential.
Our task space is structured into three key components:

• Robot Control Commands: This component encom-
passes the control commands necessary for managing
the robot’s movements and interactions within its envi-
ronment.

• Gait Cycle Instructions: This part provides the directives
for the entire gait cycle, ensuring the robot follows the
desired locomotion pattern throughout its operation.

• Regularization Terms: The final component focuses on
optimizing energy efficiency and applying smoothing
techniques to the joint output pairs to ensure fluid
and natural movement. Additionally, it ensures that the
robot maintains a stable and natural pose throughout the
motion.

For the robot control commands, we implement a reward
function defined by the following formula:

Rcmd = γxy exp (αxy (v̂xy − vxy)
2)+γω exp (αω (ω̂ − ω)2)

(8)
γ and α is the weight of linear velocity and angular velocity
part. The specific scale is in the reward appendix.

In the gait generation component, a gait generator is
employed, which requires several parameters, including the
phase indicator ϕ, transition ratio τ , and phase bias β. The
gait generator outputs the stance mask for both feet. The
phase indicator and transition ratio are constrained within the
range of 0 to 1, while the swing ratio is implicitly defined
as 1-τ

fmask =

{
1 if (clip(φ+ β, 0, 1)) < τ

0 otherwise
(9)

Using the fmask, we are able to effectively control the
robot’s gait by monitoring the number of foot contacts and
the corresponding foot mask. As described in Table I, we
formuate the gait reward as:

Rgait = (Cc == Ca), (10)

where Cc is the expected number of contact feet and Ca is
the actual number of contact.
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Additionally, we have implemented adaptive adjustments
to the gait as shown in Figure 4. Specifically, the transition
ratio decreases as speed increases, which aligns with both
intuition and the natural dynamics of human locomotion.
Figure 4.a shows the linear relationship between the robot’s
velocity and the transition ratio in the gait of the humanoid
robot XBot-S. At lower velocities, the transition ratio is
higher, meaning that the swing phase is reduced, resulting
in longer stance phases that enhance stability. In contrast,
at higher velocities, the transition ratio decreases, which
increases the swing phase duration. This adjustment enables
the robot to cover more ground with each step at higher
speeds, facilitating more efficient locomotion as velocity
increases. And Figure 4.b depicts the foot contact patterns
over time for both the left and right feet, represented by
masks. The modulation of the transition ratio according to
velocity influences the timing of the swing and stance phases.

As the transition increases and the swing ratio decreases, the
masks of the left and right feet will be 0 at the same time,
which means that the robot has both feet in the air and has a
running gait. This method can generate walking and running
gaits according to the speed, which is a very simple and
efficient method for gait control of humanoid robots.

For the regularization terms, as shown in Table I, we
incorporate a feet distance term that ensures the feet remain
within an acceptable range while moving. Additionally, we
include an action smoothness term, which prevents the action
from changing too abruptly during movement. The reward
function is formulated as follows:

Rreg = wfeetRfeet + wactionRaction, (11)

where wfeet and waction is the scale of the feet distance
reward and action smooth reward. The total reward to update



Fig. 6: Visualization of the knee dof position curve between
our model and that without Autoencoder under external
disturbance.

the policy is represented as follows:

R = Rcmd +Rgait +Rreg. (12)

TABLE I: Robot Reward Functions

Reward Equation Scale
Tracking Linear
Velocity

exp (αxy (v̂xy − vxy)2) 1.2

Tracking Angular
Velocity

exp (αω (ω̂ − ω)2) 0.4

Feet Contact
Number

Cc == Ca 0.8

Feet distance (Dismin < Disf )∧ (Disf < Dismax) 0.15
Action Smooth exp (∥at − 2at−1 + at−2∥) 0.01

V. EXPERIMENT

A. Implementation Details

All experiments are trained in the Isaac Gym simulation
with 4,096 parallel environments using Proximal Policy
Optimization (PPO) [22]. We present our PPO training
parameters in Table II. Then the trained policy is trans-
ferred to Mujoco for sim-to-sim validation. The network
architecture of the actor and critic is represented as a Multi-
Layer Perceptron (MLP) with layers of sizes [512, 256, 128]
and [768, 256, 128] respectively. The discriminator is also
represented as a MLP with layers of sizes [1024, 512]. The
motion encoder and decoder in the Autoencoder both consist
of a 6-layer transformer encoder and decoder.

The action is represented as at ∈ R20, comprising the
target position for each revolute joint. The target positions are
then sent to a Proportional-Derivative (PD) controller, which
converts them into torques for each joint. The observation
is represented as ot ∈ R71. The observation includes a
periodic signal represented by the sine and cosine of the
cycle time, along with a 3-dimensional command vector
(vx, vy, vyaw). This is followed by a 20-dimensional joint
position vector, a 20-dimensional joint velocity vector, and a
20-dimensional action vector. The final 6-dimensional vector
consists of the base angular velocity and base orientation.
Domain randomization is the key factor to ensure sim-to-real
success. As shown in Table III, Our domain randomization
includes four elements. Mass variation is used to address

Fig. 7: Visualization of the episode length between the our
model and that without Autoencoder.

the difference in mass between the real world and the
simulation. Friction coefficient randomization ensures the
robot can adapt to various surfaces in the real world. Motor
strength variation helps the robot handle fluctuations in motor
performance, such as those caused by low battery levels.
Lastly, sensor noise is introduced to enable the robot to cope
with real-world sensor inaccuracies.

B. Evaluation and Result

In this section, we evaluate the effectiveness and ro-
bustness of our proposed framework, with the real-world
results shown in Figure 5. Our robot demonstrates robust,
human-like walking, running, and jumping abilities. It can
effectively adapt to external disturbances as well. In Figure
5.1, external forces are applied to the robot’s leg, showing
its ability to maintain balance and recover to a stable state
when pushed. Figures 5.2 shows the robot’s performance
on diverse surfaces, such as soft sponge, highlighting its
adaptability to various terrains. Figure 5.3 shows that except
jumping on the plane, our robot can also jump onto a 15cm
stair. We also compare the performance of our Autoencoder-
integrated framework with a model that does not incorpo-
rate Autoencoder. Figures 5.4 and 5.5 demonstrate that the
non-Autoencoder model struggles with large external forces
and challenging surfaces. The training curves in Figure 7
indicate that the Autoencoder-integrated model converges to
the maximum episode length more quickly than the model
without Autoencoder. Finally, we also conduct experiments
where the humanoid robot is pushed on its base in the
Mujoco simulation. The curve in Figure 6 demonstrates
that our framework enables the robot to recover quickly
from disturbances, whereas the framework without the Au-
toencoder fails to recover after being pushed. These results
collectively underscore the superiority of our Autoencoder-
enhanced framework.



TABLE II: Hyperparameters for Training
Hyperparameter Value Description
Disc learning rate 5× 10−5 Learning rate for discriminator

Policy learning rate 5× 10−5 Learning rate for policy
Amp replay buffer 100000 Number of amp motions

Batch Size 4 Number of samples per batch
Discount Factor (γ) 0.994 Discount factor for future rewards

PPO Clip Ratio 0.2 Clipping parameter for PPO algorithm
GAE Lambda (λ) 0.9 Lambda for Generalized Advantage Estimation

Amp task reward lerp (λ) 0.8 Blending the task reward and the AMP reward

TABLE III: Domain Randomization Parameters

Parameter Range Description
Mass Variation [-5, 5] Random variation in the mass of the robot

Friction Coefficient [0.1, 2.0] Variation in the friction of the contact surfaces
Motor Strength [0.9, 1.1] Random scaling of motor torque output
Sensor Noise [0.95, 1.05] Random noise added to sensor readings

C. Limitation

Although our framework enables the robot to walk, run,
and jump in a human-like manner, it is limited by the
inability to perform all three motions within a single policy.
Additionally, smooth transitions between different motions
are not yet possible, which impacts the robot’s versatility
in practical applications. Moreover, our current framework
only supports target velocity as the input command, further
restricting its usability. Ideally, the user should be able to
input a desired motion state, either through natural language
or 3D motion parameters, allowing the framework to achieve
the specified target state.

VI. CONCLUSION

In this paper, we retarget human motions from both the
CMU dataset and those accurately recorded using our own
mocap equipment. Initially, we use Poselib in ASE [8] for
retargeting, followed by applying Pink for inverse kinematics
to ensure that the motion data stays within the robot’s physi-
cal limits. We successfully deploy the AMP framework [18]
on a real humanoid robot, enabling it to walk, run, and
jump in a human-like manner. Additionally, we employ a
Autoencoder [11] to compress both historical and future ob-
servations into a latent space, incorporating this information
into the privileged observation, making the policy aware of
both past and future states. Our experiments demonstrate that
the proposed Autoencoder-integrated framework significantly
improves the stability of the humanoid robot.
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